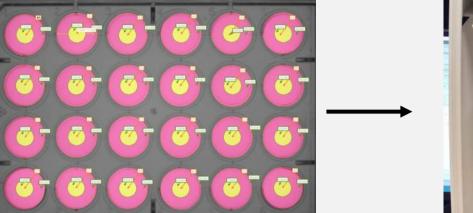
Evaluation of Anxiolytic Potential of Amitriptyline, Fluoxetine, and TP003 in Zebrafish Larvae Using the Light-Dark Challenge Assay Małgorzata Potoczna ^{1,2}, Ewa Sokołowska ¹, Piotr Podlasz ²

1. Transpharmation Poland Ltd., ul. Michała Oczapowskiego 13/105D, 10-719 Olsztyn, Poland 2. Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Michała Oczapowskiego 13, 10-719 Olsztyn, Poland

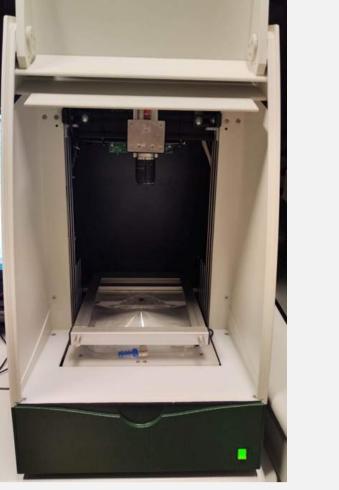
Transpharmation

Science that translates into results

UNIVERSITY **OF WARMIA AND MAZURY** IN OLSZTYN


Introduction

The evaluation of the anxiolytic potential in preclinical models is crucial for developing effective treatments for anxiety disorders. Zebrafish larvae have emerged as a valuable tool in drug discovery due to their genetic similarity to humans and their rapid development, making them ideal candidates for the high-throughput screening.


In this study, we aim to assess the anxiolytic effects of two antidepressant drugs: commonly used amitriptyline, fluoxetine, and one novel compound called TP003; non-

Experimental design

5 days post fertilization(dpf) zebrafish AB larvae

30 minutes of incubation with a drug on 24-well plate (arenas divided to inner and outer zone)

Light

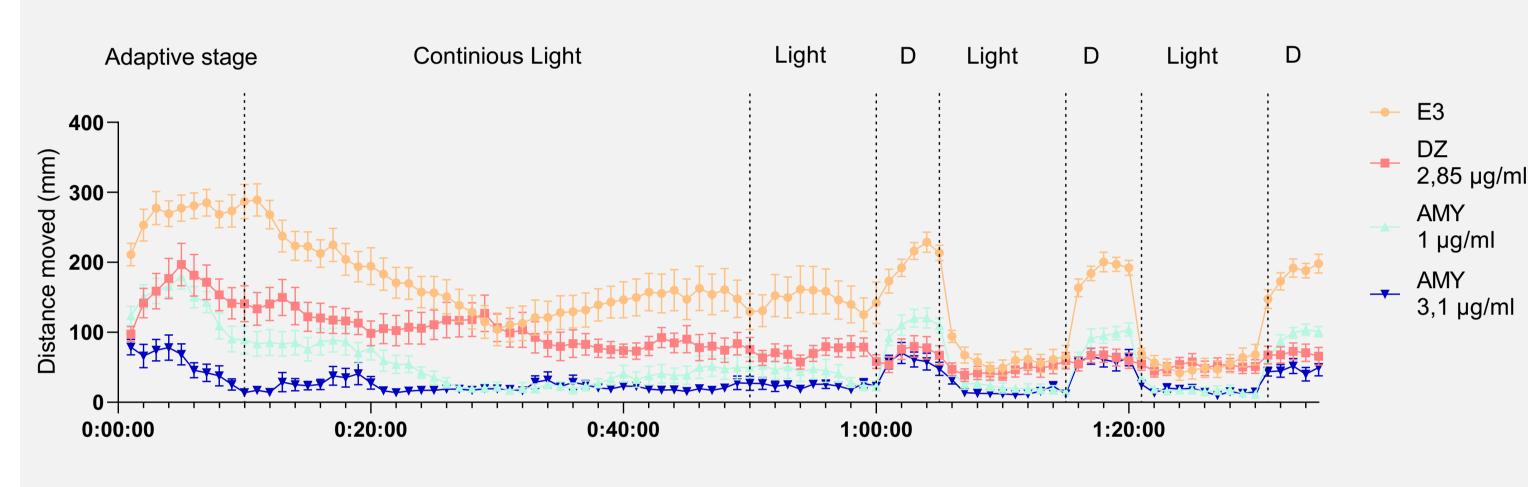
Dark

Measured parameters

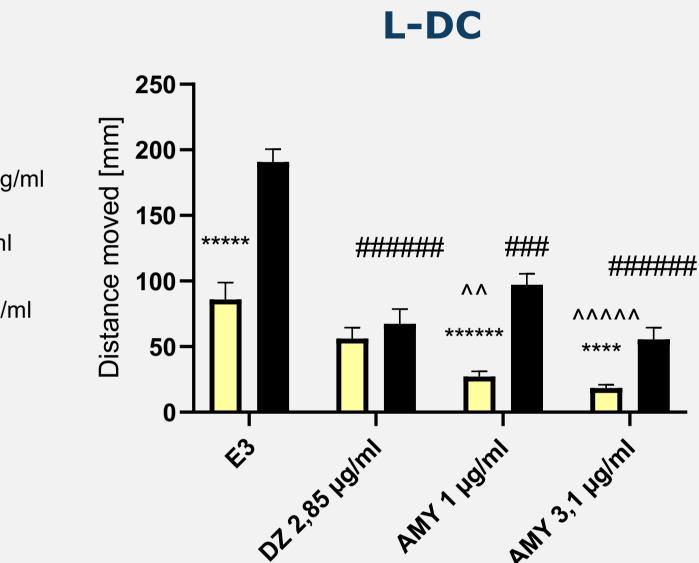
Distance moved [mm] – shows the average distance which larvae have travelled in 1-min time bins under changing: light and dark phase

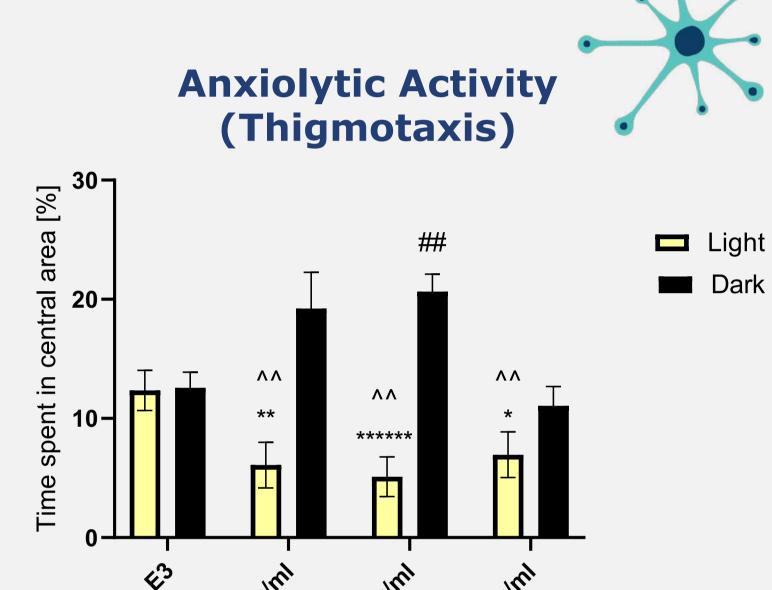
Anxiolytic activity [%] – shows the percentage of the time the larvae spent in the centre of the arena under the changing conditions.

selective benzodiazepine site agonist that induces anxiolysis via $a2GABA_A$ receptors.


The Light-Dark Challenge test (L-DC) has been utilized as an assay reflecting larval anxiety-like behaviour (response to light and dark). Additionally, thigmotaxis measurement has been conducted.

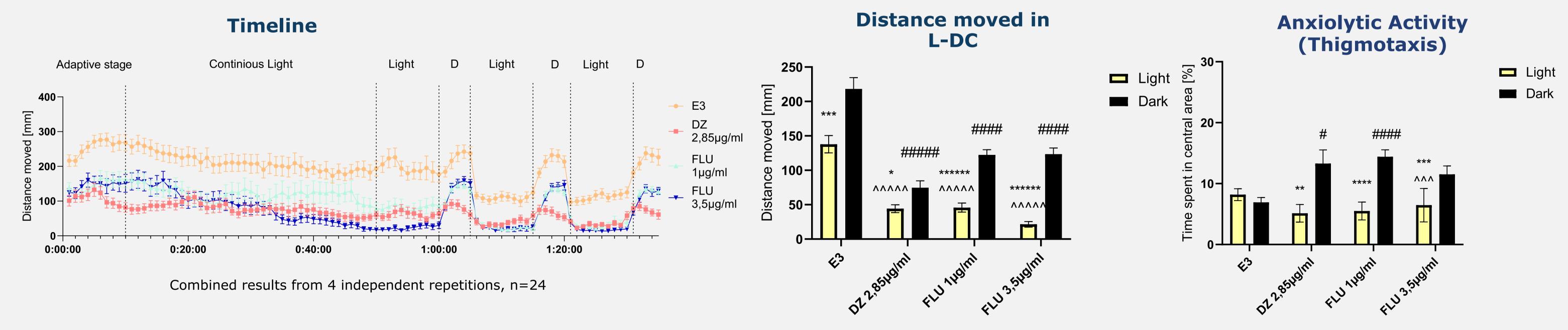
Adaptive stage							g of larvae <i>Vision</i> ®)	Anxiolytic activity [%]
10 min		10 min	5 min	10 min	5 min	10 min	5 min	<i>Time in central arena</i> <i>Time in outer zone + Time in inner zone x</i> 100%
	Light	3. 5.	Dark	Light	Dark	Light	Dark	


Results


Anxiolytics effect of amitriptyline (AMY)

Timeline

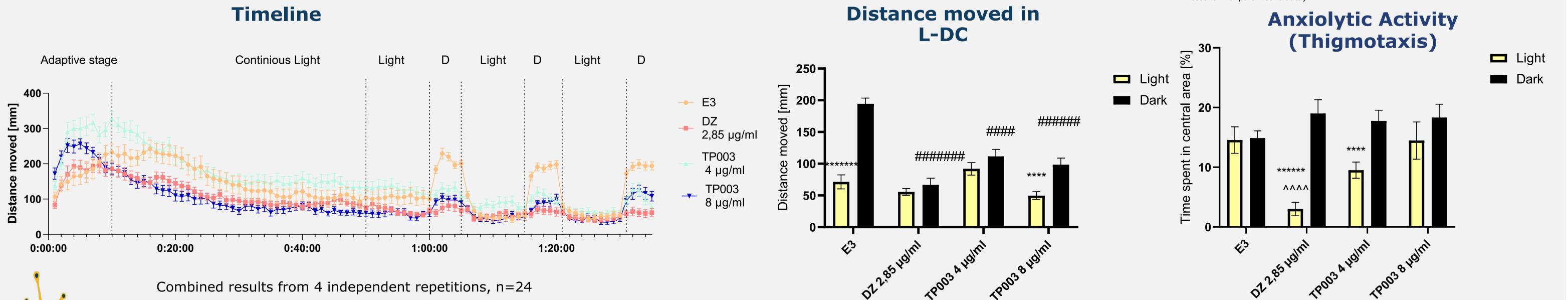
Combined results from 4 independent repetitions, n=24


Average distances moved by 5dpf zebrafish larvae under light and dark conditions. Data presented as mean \pm SEM, n=24 animals per group. *****p<0.00001, *****p<0.00001 – light vs dark conditions (T-student for parametric or Mann–Whitney U test for nonparametric data). ###p<0.001, ######p<0.000001 dark treatment groups vs dark control group (E3), ^^p<0.01, ^^^^p<0.00001 – light treatment groups vs light control group (E3) (One way ANOVA, post hoc: Dunnett test for parametric and Kruskal-Wallis test for nonparametric data)

Distance moved in

The percentage of time spent by 5dpf zebrafish larvae in the central area. Data presented as mean ± SEM, n=24. *p<0.05, **p<0.01, *****p<0.000001 - light

vs dark conditions (T-student for parametric or Mann-Whitney U test for nonparametric data. ##p<0.01 dark treatment groups vs dark control group (E3), ^^p<0.01, – light treatment groups vs light control group (E3) (One way ANOVA, post hoc: Dunnett test for parametric and Kruskal-Wallis test for nonparametric data


Anxiolytics effect of fluoxetine (FLU)

Anxiolytics effect of TP003

Average distances moved by 5dpf zebrafish under light or dark conditions. Data presented as mean \pm SEM, n=24 animals per group. *p<0.05, ***p<0.001, *****p<0.000001 – light vs dark conditions (T-student for parametric or Mann-Whitney U test for nonparametric data). ####p<0.0001, #####p<0.00001 dark treatment groups vs dark control group (E3), ^^^^p<0.00001 – light treatment groups vs light control group (E3) (One way ANOVA, post hoc: Dunnett test for parametric and Kruskal-Wallis test for nonparametric data)

The percentage of time spent by 5dpf zebrafish larvae in the central area. Data presented as mean ± SEM, n=24. p<0.01, ***p<0.001 ****p<0.0001 - light vs dark conditions (T-student for parametric or Mann-Whitney U test for nonparametric data. #p<0.05, ####p<0.0001 dark treatment groups vs dark control group (E3), ^^^p<0.001, - light treatment groups vs light control group (E3) (One way ANOVA, post hoc: Dunnett test for parametric and Kruskal-Wallis test for nonparametric data)

Average distances moved by 5dpf zebrafish larvae under light and dark conditions. Data presented as mean \pm SEM, n=24 animals per group. ****p<0.0001, *****p<0.0000001 – light vs dark (T-student for parametric or Mann–Whitney U test for nonparametric data). ####p<0.0001, ######p<0.000001, #######p<0.000001- dark treatment groups vs dark control group (E3) (One way ANOVA, post hoc: Dunnett test for parametric and Kruskal-Wallis test for nonparametric data)

The percentage of time spent by 5dpf zebrafish larvae in the central area. Data presented as mean ± SEM, n=24, ****p<0.0001, *****p<0.000001 - light vs dark conditions (T-student for parametric or Mann-Whitney U test for nonparametric data. ^^^p<0.0001– light treatment groups vs light control group (E3) (One way ANOVA, post hoc: Dunnett test for parametric and Kruskal-Wallis test for nonparametric data)

Conclusions

- All tested substances exhibit an anxiolytic effect, albeit with varying levels of efficacy contingent upon the administered dosage.
- Our results provide further evidence supporting the use of TP003 as a potential therapeutic option for anxiety-related disorders.
- Collected data contribute to our understanding of the mechanisms underlying anxiety and provide a foundation for future research on the development of novel treatments.
- The Light-Dark Challenge assay is a reliable tool for anxiolytic efficacy testing in zebrafish larvae model.