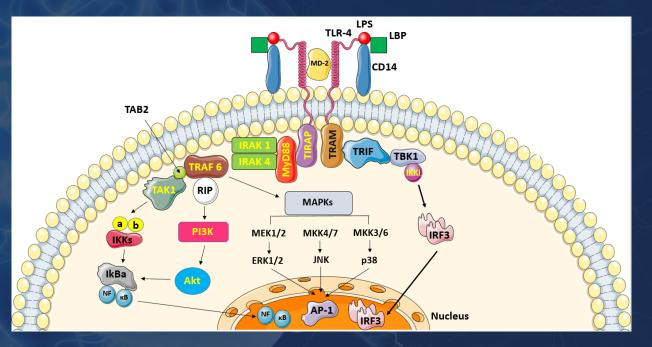
Investigation of lipopolysaccharide (LPS) administration by intraperitoneal (i.p.) injection and intracerebroventricular (i.c.v) infusion as mouse models

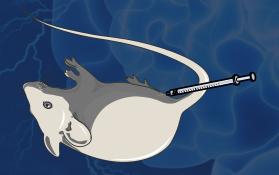

Introduction

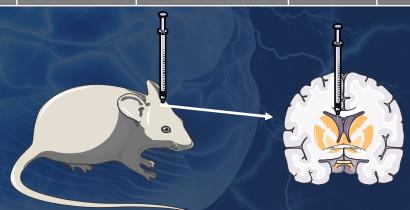
Transpharmation Science that translates into results

- Neuroinflammation has been linked to the pathogenesis of multiple neurodegenerative and psychiatric disorders.
- ➤ LPS (lipopolysaccharide) is an outer membrane component of gram-negative bacteria that has been used to model neuroinflammation, yet few studies have compared peripheral and central cytokine expression.

Aim:

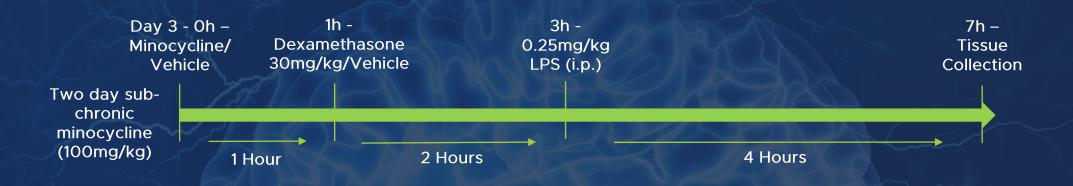
- ➤ To directly compare the inflammatory response induced by LPS through i.p. and i.c.v. administration in both the central nervous system and the periphery
- > To investigate the effect of sub-chronic and acute minocycline as well as acute dexamethasone pre-treatment on i.p. LPS-induced inflammation


TLR-4 Pathway



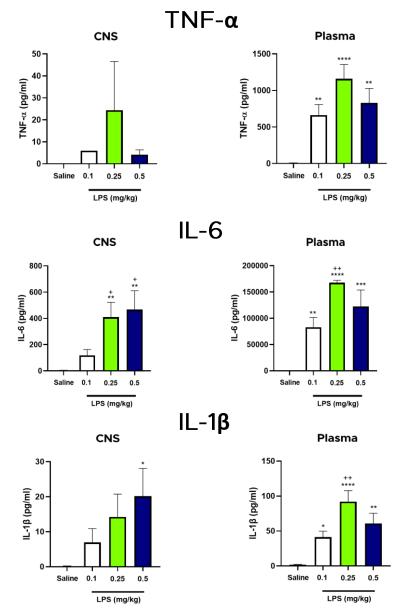
	MA .			
Group	Treatment	Concentration	Route	Tissue Collection N=6
1	Saline		i.p.	4 Hours
2	LPS	0.1 mg/kg	i.p.	4 Hours
3	LPS	0.25mg/kg	i.p.	4 Hours
4	LPS	0.5mg/kg	i.p.	4 Hours

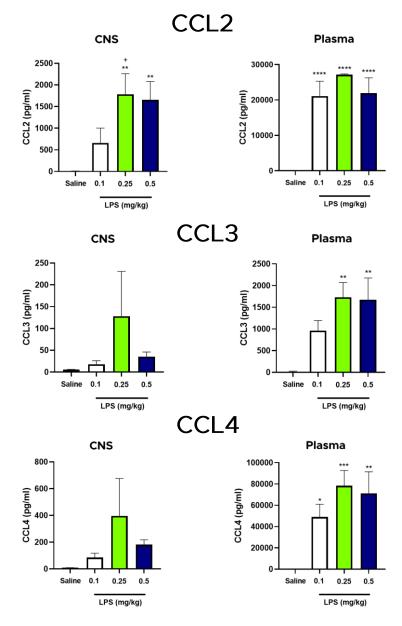
Group	Treatment	Concentration	Route	Tissue Collection N=4
1	aCSF		i.c.v.	4 Hours
2	LPS	1μg/mouse	i.c.v.	4 Hours
3	LPS	5μg/mouse	i.c.v.	4 Hours
4	LPS	20μg/mouse	i.c.v.	4 Hours



- 4 hour i.p. or i.c.v. LPS
- Brain and trunk blood collected
- TNF- α , IL-6, IL-1 β and CCL2, CCL3, CCL4 measured in plasma and left hemisphere via Meso Scale Discovery platform

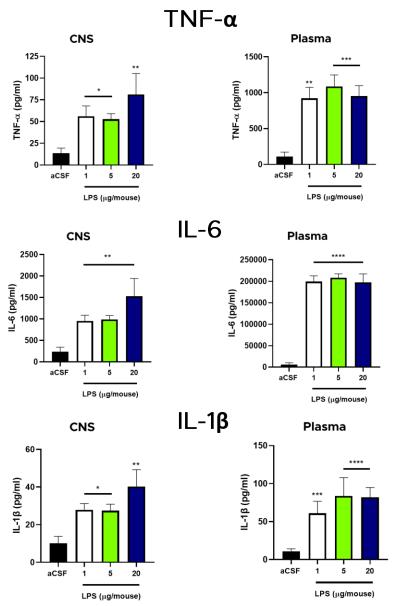
Methods – Experiment 3

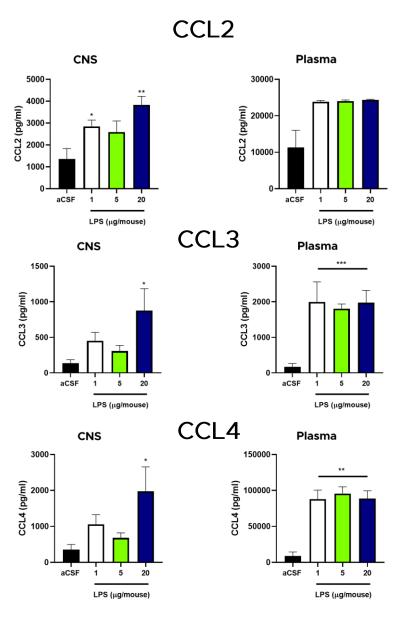




- Minocycline administered sub-chronically and acutely by intraperitoneal injection (i.p.)
- Dexamethasone administered acutely per os (p.o.)
- LPS administered i.p. (0.25mg/kg)
- Brain and trunk blood collected
- TNF- α , IL-6, IL-1 β and CCL2, CCL3, CCL4 measured in plasma and left hemisphere via Meso Scale Discovery platform

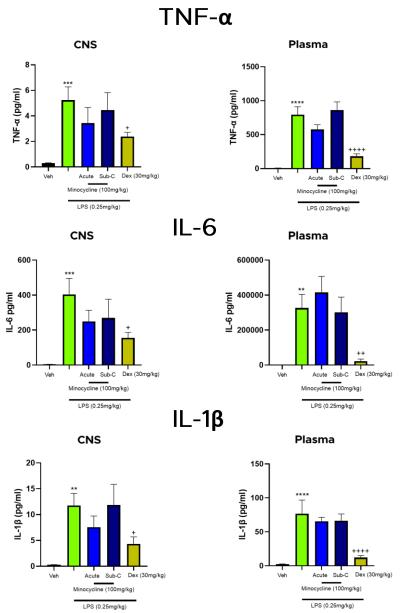
Results 1

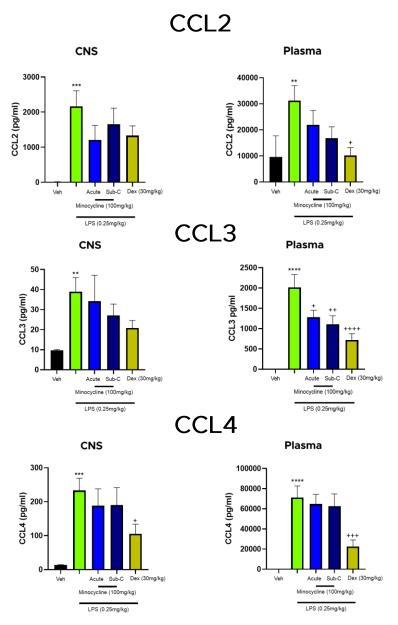



n=5-6 per group. One-way ANOVA (P<0.05); Fisher's LSD. Values expressed as protein concentration (pg/ml). Data presented as Mean \pm SEM.

www.transpharmation.co.uk | Copyright © 2020 Transpharmation. All Rights Reserved.

Results 2





Results 3

n=9-10 per group. One-way ANOVA (P<0.05); Fisher's LSD. Values expressed as protein concentration (pg/ml). Data presented as Mean \pm SEM.

www.transpharmation.co.uk | Copyright © 2020 Transpharmation. All Rights Reserved.

Conclusion

- Both i.p. and i.c.v. LPS administration induced a robust peripheral inflammatory response
- Both i.p. and i.c.v. LPS administration induced a robust central inflammatory response although the specific targets that increased in brain tissue differed between models
- i.p. administration of LPS is sufficient to induce a model of neuroinflammation, responsive to anti-inflammatory drugs, and shows advantages over the i.c.v. model requiring surgical infusion
- Neuroinflammation induced by i.c.v. administration was not contained within the brain at the doses tested here

Funding Sources

Investigation of lipopolysaccharide (LPS) administration by intraperitoneal (i.p.) injection and intracerebroventricular (i.c.v) infusion as mouse models of neuroinflammation

L. R. DAVISON¹, D. ZWILLING², H. WOLFE³, R. WILLIS³, M. J. HAFEY², T. XIONG², E. STOJEK¹, M. MITSOGIANNIS¹, S. BOGEN², J. BROWNLEES³, J. PRENDERVILLE¹

¹Transpharmation Ireland Ltd, Dublin, Ireland; ²Merck & Co., Inc., Kenilworth, NJ, USA; ³MSD, London, UK

This research was funded by Transpharmation Ltd. and MSD, London, UK and Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.

